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Abstract: 

We present progress made in developing capabilities that 

fit within the EPOS sensor web dynamic replanning 

architecture described in our NSTC 2007 paper.  We first 

describe a sensor web use case that is one of the drivers in 

our development.  We then discuss two major information 

exploitation capabilities, the first focused on cloud cover 

forecasts and the second focused on wild fire prediction.  

We also describe several planning capabilities, including 

system-of-system coordination, planning for multiple 

heterogeneous UAVs and manned aircraft, and enhanced 

single satellite planning capabilities, focused on EO-1.  We 

describe the evolution of these capabilities toward 

compliance with OGC standards. 

I. EPOS
1
 OVERVIEW 

The fundamental EPOS concept of operation is that of 

optimized dynamic replanning and execution. Sensor data 

and model forecasts are inputs to a closed-loop decision-

making system. In collaboration with users, EPOS 

monitors the input, and when appropriate, replans and 

executes a new plan that optimizes the tasking of available 

sensing assets to gather data. EPOS provides the science 

community with innovative capabilities that can be used to 

advance science modeling of the phenomena of interest.  

Its capabilities can also be used to provide governmental 

agencies and commercial interests early warning of 

possible hazardous situations. The high-level functional 

architecture for EPOS is illustrated in Figure 1.  

Situation Awareness:  Situation Awareness provides 

estimates of current world and system states.   

Situation Assessment: Situation Assessment takes 

Situation Awareness output and uses Information 

Exploitation technologies, e.g., pattern recognition and 

data mining, to support monitoring, diagnosis and 

prediction of world and system states.  

Planning and Execution: EPOS planning is optimization-

based technology that will support a full range of 

operational autonomy, from manual operator control to full 

autonomy. 
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Figure 1: EPOS Functional Architecture 

II. CLOUD COVER WEB SERVICES CONCEPT OF 

OPERATIONS 

We are in the early stages in the re-architecture of EPOS’s 

situation awareness/assessment and planning capabilities 

as web services.  At present only cloud cover estimation 

and forecast capability is being implemented as a web 

service.  However, the new architecture provides a 

roadmap for how these capabilities will play in a web 

services concept of operation over time. 

Figure 2 shows the concept of operations for the cloud 

cover web service currently under development. A user 

specifies a 4-D volume of interest consisting of a set of 

(latitude, longitude, altitude, time) 4-tuples.  The user can 

then request values of predicted cloud cover (“forecasts”) 

by altitude layers, and/or values of estimated actual cloud 

cover (i.e., cloud cover values estimated from data 

gathered during the time interval of interest, the “actuals”).  

The actuals request can be accommodated at any time after 

the posting time for the data from the end of the time 

interval of interest.  Historical actuals will be available 

immediately.  If there is no available forecast yet, i.e., the 

time interval of interest is more than 84 hours in the future, 

the response will include the times when forecasts will 

become available and possibly a prediction based on 

relative frequencies calculated from historical actuals data. 

The output of the OGC
2
-compliant, EPOS cloud service 

will be one or more layers of cloud cover data, depending 

upon the altitude range specified in the 4-D volume. The 

                                                
2  Open Geospatial Consortium 
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actuals are based on AFWA
3
 WWMCA

4
 data, and the 

forecasts on AFWA SCFM
5
 data.  We will also provide a 

quality metric and cloud probabilities associated with the 

forecasts. The quality metric and cloud probability 

calculations are the result of Draper information 

exploitation models and algorithms developed from 

analysis of the multiple terabytes of historical cloud cover 

data stored in the EPOS Cloud Server at Draper.  

Calculation of the quality metric was described in the Final 

Report from Draper’s AIST-02 project.  The calculation 

and evaluation of the cloud probability calculations are 

described in III.B. 

 

Figure 2: Cloud Cover Web Service 

Results from the use of cloud forecasts in EO-1 operations 

are summarized in Table 1.  The cumulative success rate 

for EPOS picks is 81.7%. 

Evaluation period  

January 2 - 
September 30, 

2006  (271 days) 

October 1, 2006 
to March 29, 2007 

(177 days) 

March 30 to 
August 26, 2007 

(153 days) 

Aug 27 to April 
20 2008 

(237 days) 

Total number of orbital 
revolutions with a 
scheduling scene 

3750 2577 2117 3280 

Total number of 
opportunities for target 

picks 
396 179 2 2 0  375 

Total number of alternate 
targets picked by EPOS 

61 49 66 117 

Total numbers of our picks 
that EO-1 actually imaged 

55 43 61 94 

Number of successful picks  
(less cloud cover over 

EPOS pick) 
47 (out of 61) 37 (out of 49) 51 (out of 66)  105 (out of 117) 

Number of unsuccessful 
picks 

14 (out of 61) 12 (out of 49) 15 (out of 66)  12 (out of 117) 

  

Table 1: Results from Ongoing EO-1 Operations using EPOS 

III. INFORMATION EXPLOITATION 

There are two major Information Exploitation efforts 

reported in this paper, Wildfire Prediction and SCFM 

Analysis. 

                                                
3  Air Force Weather Agency 
4  World-Wide Merged Cloud Analysis 
5  Stochastic Cloud Forecast Model 

A. WILDFIRE PREDICTION 

We have continued the development of models that predict 

if a wildfire will become or stay “large” the next day, 

given the three previous days worth of observations. We 

built our prediction models using data collected from the 

MODIS (on Terra) Thermal Anomalies/Fire Daily Level 3 

sinusoidal grid product fused with NOAA daily weather 

data and land cover data collected from the National Land 

Cover Database (2001). The land cover data also allows us 

to estimate proximity of a fire to populated areas, 

providing an additional measure of fire danger.    

The objective of wildfire prediction is to develop 

predictive modeling approaches that will improve 

prediction of Earth phenomena, (e.g., wildfire, harmful 

algae bloom, hurricanes, tornadoes).  The initial 

application in our project is wildfire prediction.   

The goal of wildfire prediction is to predict which current 

fires will develop into large and/or threatening ones based 

on several days of MODIS
6
 fire observations, along with 

NOAA
7
 weather data and Landsat land cover data. 

A wildfire sensor web is a good example for demonstration 

of our information exploitation technology because it 

involves a disparate set of asynchronous distributed sensor 

systems with different lead times for tasking, some of 

which might be days in advance.  For example, the target 

location for an image to be gathered by ASTER
8
 has to be 

known several days in advance, and a UAV
9
 used to image 

wildfires must file its initial flight plan at least 72 hours in 

advance, with constrained updates at 24 hour intervals. 

We developed a model to predict if a fire on day D will 

become “large” (at least 5 contiguous fire pixels) on day 

D+1, and day D+2.  A fire is identified based on MODIS 

Level 3 data – Thermal Anomalies/Fire Daily Global with 

1 km  resolution.  Pixel values are given from 0 - 9.  We 

considered pixels with values 7, 8, and 9 as fire pixels.   

We fused the MODIS data with NOAA weather data 

consisting of daily observations of temperature, relative 

humidity, wind speed, wind direction, wind gusts collected 

from weather stations.  We used land cover data from the 

National Land Cover Database 2001 (NLCD 2001) as a 

proxy for the amount of fuel available for the fire, and 

fused this data with the MODIS and NOAA data. 

The NLCD are provided on a state-by-state basis. Figure 3 

illustrates land cover of the state of California.   

                                                
6  Moderate Resolution Imaging Spectroradiometer 
7  National Oceanic and Atmospheric Administration 
8  Advanced Spaceborne Thermal Emission and Reflection Radiometer 
9  Unmanned Air Vehicle 
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Figure 3: California Land Cover 

We used historical data from 2000-2006 for the states of 

Arizona, California, Nevada, Utah, and Texas to develop 

the EPOS Wildfire Prediction Model. 

A fused input data record has the following fields: 

Day -2 fire info and weather 

Day -1 fire info and weather 

Day 0 (“today”) fire info and weather 

Land cover. 

A representation of the data over time is given in Figure 4.  

Data records are color coded over the five days and show 

the evolution of  fires.  A single record is defined by 

processing the data from “Today.”  Each record in the 

Today file is either a large or small fire.  On other days, a 

record could be either a large fire, small fire or no fire. 

 

Figure 4:  Fire Data for Prediction 

Results from our data mining process produced a Wildfire 

Prediction Model, illustrated in Table 2.  We found that a 

Random Forest Decision Tree algorithmic approach had 

the best performance and it is used in the Wildfire 

Prediction Model.  It correctly predicts no large fires on 

Day +1 better than the human does.  However, the simple 

use of the model in predicting large fires was equivalent to 

the human prediction. The human decision model is simple 

at this stage of our work: a large fire today will remain 

large for the next two days.  We plan to improve the 

human decision model to better match reality. 

no large fire yes large fire

model 80% 25%

human 71% 26%

model 20% 75%

human 29% 74%

n
o

 l
a

rg
e

 

fi
re

y
e

s
 

la
rg

e
 

fi
reP
re
d
ic
ti
o
n

Day +1 state of the world

 

Table 2:  Wildfire Prediction Metrics 

Using the probabilistic information provided by the 

Wildfire Prediction Model produced results much better 

than human prediction.  Table 3 illustrates the use of the 

probability of a large fire on day D+1 in prediction.  If a 

cutoff of 0.90 or above is used, the percentage of true 

positives is very high and covers 39% of the cases.  

Because there are many more fires than sensor web 

resources can image, this provides excellent input into the 

sensor web planning function in order to use the relatively 

scarce sensor resources efficiently. 

Probability Range True Positives (%) Observations (%)

Human Performance 74% -

1.00 100% 9

0.90-0.99 91 30

0.80-0.89 78 15

0.70-0.79 70 17

0.60-0.69 63 15

0.50-0.59 59 12
 

Table 3: Predicting a D+1 Fire for Large Fires Active Today 

B. SCFM ANALYSIS FOR USE IN EPOS 

We access cloud data automatically from the AFWA 

server 24 hours a day, 7 days a week.  The current cloud 

data (WWMCA = World-Wide Merged Cloud Analysis) is 

received every hour, while the forecast cloud data (SCFM 

= Stochastic Cloud Forecast Model) is received every six 

hours, approximately 1.5 hours after the nominal time of 

the forecast. We process the data and store in the EPOS 

Cloud Server.  Queries by visualization and planning allow 

access to any of the current or forecast data sets.    

We use cloud forecasts to help choose between conflicting 

EO-1 imaging opportunities.  The simplest selection rule is 

this: 

• Rule 1:  When given conflicting targets of equal priority, 

select the target whose predicted cloud cover is smallest 
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A more sophisticated selection rule, which maximizes the 

expected number of cloud-free
10

 scenes, is this: 

• Rule 2:  When given conflicting targets of equal priority, 

select the target for which the probability P(total cloud cover 
! 20%) is largest 

In work reported previously, we have suggested how 

SCFM data may be used to estimate P(C ! x), where C 

denotes total cloud cover.  Our technique makes the 

following assumptions: 

• Total cloud cover C at latitude !, longitude " is a beta-

distributed random variable 

• SCFM-predicted total cloud S(!, ") is beta-distributed with 

the same mean and variance
11

 

• Mean and variance of S(!, ") are slowly-changing functions 

of ! and ", so may be estimated by sampling S(!, ") near 

(!, ")  

• The parameters # and $ of the beta distribution of S(!, ") 

may be recovered from sample values using either method-
of-moments or maximum likelihood estimates 

• P( C ! x ) = I( x, #, $ ) , where  I( x, #, $ ) =  

B( x, #, $ )/B( #, $ )  is the incomplete beta function   

We have estimated P(C ! x) for a set of test cases.  Figure 

5 illustrates sample results obtained using this software. 

 
Figure 5: Sample Results using SCFM Northern Hemisphere 

Note that a smaller SCFM does not imply a larger P(C ! 

20 %).  In Figure 6, the SCFM value at target location on 

left is 4%, while P(C ! 20 %) estimated from the data in 

the 5x5 array surrounding the target location is 54%. 

SCFM value at target location on right is 15%, while 

P(C ! 20 %) estimated from the data in the 5x5 array 

surrounding the target location is 95%.  Note that a 5x5 

array is used because it maps the resolution of the cloud 

                                                
10 In this work, we call an image “cloud-free” if less than 20% of the 

image area is obscured by clouds.  
11 Note that SCFM-predicted total cloud is beta-distributed by 

construction.  

forecast to the resolution of the underlying NOAA data 

used to generate the forecast. 

 

Figure 6: Smaller SCFM Does not Imply Larger P( C ! 20% ) 

We conducted an experiment to determine whether this 

probability estimation methodology can be used in support 

of EO-1 planning to increase the yield of cloud-free 

scenes.  We used the following procedure: 

• Using historical EO-1 target locations and historical EO-1 

ephemeris, generate a simulated list of EO-1 imaging 

opportunities for a 24 hour planning period.  Determine 

times at which targets can be imaged, limiting roll to ±2 
WRS paths. 

• (Rule 0) For each descending (daylight) pass, and each 

ascending (night) pass in the 24 hour planning period, 

randomly select one of the feasible targets. Count the 

number of selected targets for which WWMCA total cloud 
is ! 20%. 

• (Rule 1) For each descending (daylight) pass, and each 

ascending (night) pass in the 24 hour planning period, select 

the target whose SCFM predicted total cloud is smallest.  

Use historical SCFM data from the forecast available 12 

hours prior to the start of the 24 hour planning period.  

Count the number of selected targets for which WWMCA 

total cloud is ! 20%. 

• (Rule 2) For each descending (daylight) pass, and each 

ascending (night) pass in the 24 hour planning period, select 

the target for which our estimate of P(C ! 20 %) is smallest.  

Use historical SCFM data from the forecast available 12 

hours prior to the start of the 24 hour planning period to 

estimate these probabilities.  Count the number of selected 
targets for which WWMCA total cloud is ! 20%.   

• Repeat using historical data for different dates.  Compare the 
performance of the two selection rules. 

Here are the results of this experiment. 

Number of simulated 24 hour periods: 

(1/1/07 to 12/30/07 at 3-day intervals) 
121 

Total number of day and night passes  

(including fractional passes): 
3660 

Number of  Rule 0 (random) selections for which  

WWMCA is ! 20% | WWMCA is available: 
1352 / 3382 

Number of  Rule 1 selections for which  

WWMCA is ! 20% | WWMCA is available: 
1916 / 3284 

Number of  Rule 2 selections for which  

WWMCA is ! 20% | WWMCA is available: 
2098 / 3288 
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Table 4  Results from Simulation Using Predicted Probability of 

Cloud Cover 

From these results, we have the following conclusions: 

• Using SCFM value to select between competing EO-1 

targets (Rule 1) is significantly better than making a random 

selection (Rule 0)  – this models current EPOS use in EO-1 
operations 

• Using our estimate of P(C ! 20%) to select between 

competing EO-1 targets (Rule 2) yields nearly 10% more 

cloud-free scenes than using SCFM value alone (Rule 1) – 

this is what we are currently evaluating for use in EO-1 
operations 

We have integrated this new capability into EPOS system 

to support EO-1 operations.  P(C ! 20 %) is now computed 

and logged for each candidate target.  We plan to meet 

with the EO-1 mission manager and system engineer  to 

discuss use of P(C ! 20%) once testing is complete. 

IV. PLANNING 

A. PLANNING FOR MULTIPLE HETEROGENEOUS UAVS 

We are extending and enhancing the single UAV planner 

developed last year to include multiple heterogeneous 

vehicles.  Note that although we refer to UAVs throughout, 

the planning technology is equally applicable to manned 

aircraft. 

As part of the UAV planner, a mathematical model will 

generate a movement and observation plan for multiple, 

heterogeneous UAVs.  We assume that there are two types 

of UAVs: a larger, high-altitude airframe capable of longer 

distances and flight times, and a smaller airframe capable 

of low-altitude flights and high-resolution imaging.  The 

model will route the UAVs on a path that will maximize 

the total value of the observations to the user.  The UAV 

will observe targets that are either “point targets” or “area 

targets.”  At each target, the UAV will collect data; for 

example, take an aerial image of a target. An overview of 

the problem is shown in Figure 7.  The detailed 

mathematical formulation is shown in Figures 8 and 9. 

The inputs for the model include UAV parameters, target 

locations, observation value information, and operational 

constraints such as keep-out zones.  The model will output 

a path for each UAV to travel and the observation times at 

each target.  

• General problem characteristics:

– All routes must be contained within a well-defined operational area, and avoid well-

defined keep-out zones (population centers)

– The output plan will be a “stick route” for each UAV.

– Additional detailed routing may also be done as a post-processing step.

• Model characteristics:

– UAVs will be assumed to have a constant speed when transiting between targets

– UAVs will spend an amount of time at each target dependent on both the target and

the UAV type

• Model Inputs:

• Cruise speed

• Image time

• Climb/descend rate

• Operational altitude range

• Sensor FOV

• Turn radius

• Geometry of operational area and
keep-out zones

• Model Outputs:

– Decision variables representing which

flight legs UAVs travel on (Path Plan)

– Arrival time and duration at each

target visited on plan (Observation

Plan)

– Total value to be gained from

performing plan

 

Figure 7: UAV Planner Problem Formulation 

A mathematical formulation has been developed using 

optimization-based models, as a mixed-integer program, as 

shown in Figures 8 and 9.  Exact solutions may be 

reasonable for smaller problem instances; however, most 

likely the eventual solution algorithm will be a meta-

heuristic; options include large-scale neighborhood search, 

or problem decomposition.  Using a heuristic will allow 

the model to be solved quickly, even with large numbers of 

UAVs and targets. It will be able to run autonomously, 

with a user-interface that will allow an operator to alter the 

paths of the UAVs, add new targets, or even re-solve the 

problem with different parameters.  In addition, the 

heuristic will be able to adjust existing solutions when new 

resources become available. 

The solution includes a path and observation plan.  The 

path plan will be the route for the UAVs to travel from one 

waypoint to the next.  The observation plan will define 

when the UAV should arrive at each target, what activity it 

performs at each target, and the length of the time that the 

UAV will spend at the target.  For example, if the UAV is 

observing an area target, then it could fly in a lawnmower 

pattern in the area.  
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Data:

• A, B = UAV types
– A signifies high-alt UAV, B signifies low-alt UAV

• a, b = number of UAVs available of types A, B

• I = set of all points (targets and bases) used in routing
– The bases will be treated as targets with no imaging time or value

• Vi(nA, nB) = value of visiting point i nA times with a UAV of type A, and nA times with

a UAV of type B.

• TA, TB = maximum endurance times of UAV of type A, B

• tij,A, tij,B= travel time between points i and j (including additional routing to avoid

keep-out zones) required by UAVs of type A, B

• ti,A, ti,B = time required to image point i, by UAVs of type A, B

Decision variables:

• xij,k = 1, if the kth UAV of type A traverses leg from point i to point j 0 otherwise (k

= 0…a)

• yij,k = 1, if the kth UAV of type B traverses leg from point i to point j 0 otherwise (k

= 0…b)

Figure 8: Model Data and Variables
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Figure 9: MIP Formulation 

B. ENHANCED EO-1 PLANNING 

We have developed an optimization-based algorithm for 

enhanced EO-1 planning.  In this section, we describe the 

algorithm in detail.  We are currently writing software to 

test out the algorithm’s performance against simpler 

heuristic approaches. 

The planning period of interest is assumed to be 1-2 weeks 

in duration.  Over the planning period we propagate the 

orbit of the EO-1 vehicle according to standard SGP4 

theory to compute all of the possible viewing opportunities 

for each target of interest. 

For each such viewing opportunity, we compute a score 

representing the utility that one would expect to gain if that 

viewing opportunity was actually attempted.  Each target is 

described by some static information including its 

geographical location or boundaries, priority, and desired 

number of “good” images.  For a given target, each 

viewing opportunity occurs at a distinct time and hence has 

its own corresponding cloud-cover forecast.  For each 

viewing opportunity, the static target information is 

combined with the cloud-cover forecast to compute its 

score.  Our algorithm does not depend on the particular 

formula used to compute these scores – however we do 

require that these scores are cumulative, i.e. the score of a 

collection of viewing opportunities is just their total score. 

At this time, we are using a simple formula in which the 

score equals the target’s priority, multiplied by the 

probability that the cloud-cover is less than 20%.  We have 

also discussed a more complex formula in which the 

statistical distribution of the cloud-cover forecast is used 

to compute a corresponding distribution of utility, and the 

expected value of this utility is multiplied by the target’s 

priority.  An example is shown in Figure 10.  We 

anticipate that this more complex formula will better take 

into account the uncertainty inherent in the forecasts. 

 
Figure 10:  Utility and Statistical Forecasts 

We assume that on each ascending or descending “pass” of 

EO-1, at most one viewing opportunity can be actually 

selected, which is current operational practice. While this 

assumption simplifies the planning problem, it could be 

extended to include multiple scenes on a single revolution. 

After computing the scores, we visualize the planning 

problem as shown in the simplified diagram of Figure 11: 

the set of ascending and descending passes are shown on 

the left – the set of targets is shown on the right – each 

viewing opportunity is an edge (with an associated score) 

connecting a pass and a target.  From this diagram, it is 

immediately apparent that the problem of selecting a 

subset of the possible viewing opportunities can be 

modeled as the well-studied assignment problem from 

operations research.  Many efficient algorithms and 

software packages have been developed to solve the 

assignment problem.  

 

 

Figure 11:  Formulation as an Assignment Problem 
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Note that the number of passes may not exactly match the 

number of targets, in which case extra “dummy” passes (or 

targets) are added as necessary, along with extra zero-score 

edges to connect them to all of the targets (or passes).  In 

addition, if multiple viewings of the same target are 

desired, then multiple copies of that target are introduced, 

including copies of the relevant viewing opportunities. 

This idea of introducing multiple copies of the same target 

immediately suggests a useful extension.  There is 

uncertainty inherent in whether any given viewing 

opportunity will be successful.  In order to gracefully plan 

for this uncertainty, for each target we can introduce 

sufficient copies so that the expected number of successful 

viewing opportunities is equal to the desired number of 

images. 

C. COORDINATION PLANNER 

The image request web service is how we envision the 

Coordination Planner we’re developing will ultimately be 

used.  This web service fits into our goal concept of how 

users can request images, which then initiates the 

processing needed to fulfill the request as well as the 

output provided from fulfilling the request. User requests 

will take the form of requirements for the image as the 

primary input – and could be at an abstract level such as a 

“theme” (e.g., wildfire, flood, hurricane), or at a more 

detailed level, e.g., target location, required resolution, 

required collection time interval, and other image 

requirements. The time window input will determine 

whether an archive image will suffice (i.e., time window 

start time far enough in the past) or be used in scheduling 

the tasking of a sensor. The priority input would be an 

input to the planning and scheduling of this image request. 

The impact of a user-specified priority will depend upon 

the overall priority mechanization – e.g., priorities could 

be a function of the theme, location, and /or the particular 

user.. 

The request will be accommodated by three coordinated 

services. A system-of-sensor-systems request broker 

service, which is functionally what we’ve called the 

Coordination Planner in previous reports, will allocate 

each user request to one (or more) sensor system planners. 

Additional detail of this service is shown in Figure 12. The 

allocation will be made by matching up the requirements 

of the user request with the capability and availability of 

the sensor systems under consideration. Opportunities for 

joint sensor system collects would be determined if 

simultaneous views were desired. The Coordination 

Planner (Figure 13) works with multiple sensor system 

planner services – some Draper developed, and some 

provided by other parties. The sensor system planner 

services determine what opportunities are available for 

meeting user requests. As discussed below, the planners 

generally collect multiple requests, before generating a 

schedule for the particular asset. The Coordination Planner 

will keep track of joint collection opportunities. The sensor 

system situational awareness and execution services accept 

the tasking schedules and produce feedback requested by 

the users. Notional feedback includes the desired image 

and/or situational awareness information describing what 

collection options are available to meet a particular user’s 

request – from which a user can optionally add 

preferences. 

 
Figure 12: Image Request Web Service 

 

Figure 13: Coordination Planner 

In general, each of the collection assets will have planning 

cycles that are independent of each other, as shown in 

Figure 14. Furthermore, the assets generally have three 

different periods for planning, each characterized by 

different rules on how new requests might get 

incorporated: preplanning, pre-execution planning, and 

execution. Note that the cycles of planning are not 

necessarily coordinated across assets, i.e., the ground 
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station planning for an overhead asset like EO-1 is not 

explicitly coordinated with UAV flight planning. 

Additionally, while an asset is getting ready to execute one 

plan, inputs for the next plan may be being processed (e.g., 

see asset C in Figure 14). The notion is that requests are 

being collected for an asset, and then plans may be 

generated at the end of a phase (e.g., Pre-planning), at 

fixed times within a phase, or based on events within a 

phase.  

 
Figure 14: Planning cycles are independent across assets 

Figure 15 provides further insight into how planning 

requests are accommodated for an individual asset through 

an example. The top row of arrows under the horizontal 

bars indicating planning phases and cycles represent a 

stream of user requests input to the planner. Requests are 

not individually addressed as they arrive at the planner. 

Instead, when the end of the pre-planning cycle occurs, the 

10 blue arrows become requests that will be considered for 

cycle 1 of planning. Requests coming in after this time, 

shown in gray on that top row of arrows, will be 

accommodated by later cycles of planning. In this 

example, three of these requests are scheduled for 

execution in the first cycle – shown as pink arrows in the 

second row of arrows. Clouds obscure one of the targets 

and so only two of three actually have good images 

collected. Thus for the next cycle of planning, 8 requests 

from cycle 1 are again considered, along with 5 requests 

that arrived after the first planning phase was complete. 

 
Figure 15: Planning requests over time for a single asset 

Figure 16 continues this example by showing that the 

process exemplified in Figure 15 is carried out for all the 

assets making up the system. 

 
Figure 16: Planning requests over time for multiple assets 

Figure 17 summarizes in one view all the web services that 

have been described in this subsection and how they work 

together to handle user requests. 

 
Figure 17: Architecture to support Concept of Operations 

A notional view of one part of a user web service 

interaction is shown in Figure 18. This particular user has 

the ability to select which assets to be considered in 

planning. The more general “discovery” service that 

determines what assets are available for planning is not 

covered in this paper. The notional user screen shows the 

user having entered a request and having received a 

schedule of opportunities that could meet the request. The 

user is selecting one of the options to send to the sensor 

system SA and execution module. 
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Figure 18: User Concept of Operations for Generating and Selecting 

Options 
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